A. \(\frac{2}{3}.\)
B. \(\frac{1}{3}.\)
C. \(\frac{{\sqrt 3 }}{2}.\)
D. \(\frac{{\sqrt 2 }}{2}.\)
B
Gọi \(O = AC \cap BD\). Do chóp \(S.ABCD\) đều \( \Rightarrow SO \bot \left( {ABCD} \right)\).
Trong \(\left( {SBD} \right)\) kẻ \(MH//SO\,\,\left( {H \in BD} \right)\)\( \Rightarrow MH \bot \left( {ABCD} \right)\).
\( \Rightarrow \angle \left( {BM;\left( {ABCD} \right)} \right)\)\( = \angle \left( {BM;BH} \right) = \angle MBH\).
\(ABCD\) là hình vuông cạnh \(a\)\( \Rightarrow AC = BD = a\sqrt 2 \).
\( \Rightarrow OB = OD = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\).
Dễ thấy \(MH\) là đường trung bình của \(\Delta SOD\)
\( \Rightarrow H\) là trung điểm của \(OD\) và \(MH = \frac{1}{2}SO\).
\( \Rightarrow BH = \frac{3}{4}BD = \frac{{3a\sqrt 2 }}{4}\) và \(MH = \frac{1}{2}SO = \frac{1}{2}\sqrt {S{D^2} - O{D^2}} \)\( = \frac{1}{2}\sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{4}\).
Trong tam giác vuông \(BMH\) có: \(\tan \angle MBH = \frac{{MH}}{{BH}}\)\( = \frac{{\frac{{a\sqrt 2 }}{4}}}{{\frac{{3a\sqrt 2 }}{4}}} = \frac{1}{3}\).
Vậy \(\tan \angle \left( {BM;\left( {ABCD} \right)} \right) = \frac{1}{3}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247