Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB

Câu hỏi :

Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho AMAB=ANAC ; gọi I và J lần lượt là trung điểm của BD, CD. Tứ giác MNJI là hình gì. Tìm điều kiện để tứ giác MNJI là hình bình hành.

* Đáp án

* Hướng dẫn giải

+) Vì I, J lần lượt là trung điểm của BD, CD nên IJ là đường trung bình của tam giác BCD. Từ đó suy ra: IJ // BC (3) .

- Từ (1) và (3) suy ra: MN // IJ .

→ Vậy tứ giác MNJI là hình thang.

+) Để MNJI là hình bình hành thì: MI// NJ.

- Lại có ba mặt phẳng (MNJI); (ABD); (ACD) đôi một cắt nhau theo các giao tuyến là MI, NJ, AD nên theo định lý 1 ta có: MI // AD // NJ (4)

- Mà I; J lần lượt là trung điểm BD,CD (5)

- Từ (4)và (5) suy ra: M, N lần lượt là trung điểm của AB, AC.

⇒ Vậy điều kiện để hình thang MNJI trở thành hình bình hành là M, N lần lượt là trung điểm của AB, AC.

Copyright © 2021 HOCTAP247