Cho hình bình hành ABCD. Gọi Bx, Cy, Dz là các đường thẳng đi qua B

Câu hỏi :

Cho hình bình hành ABCD. Gọi Bx, Cy, Dz là các đường thẳng đi qua B, C, D và song song với nhau. Mặt phẳng (∝) đi qua A và cắt Bx, Cy, Dz lần lượt tại B’, C’, D’ với BB’ = 2, DD’ = 4. Khi đó CC’ bằng:

A. 3

B. 4

C. 5

D. 6

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Trên Bx và Dz lấy điểm B′ và D′ sao cho BB’ = 2, DD’ =4

Gọi O là tâm hình bình hành ABCD, I là trung điểm của B′D′

Ta có  BDD′B′ là hình thang, OI là đường trung bình của hình thang nên

OI // BB′ // DD′ // Cy

OI =BB' + DD'2=2+42=3

 Xét mặt phẳng tạo bởi OI và CC′ có: AI ∩ Cy = C′

Ta có OI // CC′, AO = OC suy ra AI = IC′

Suy ra OI là đường trung bình của tam giác ACC′ CC′ = 2OI = 6

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Hai mặt phẳng song song có đáp án !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247