Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD)

Câu hỏi :

Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.

A. Góc của (SAB) và (SBC) là góc ABC và bằng 90o.

B. Góc của (SAB) và (SBC) là góc BAD và bằng 90o.

C. AB ⊥ BC; AB ⊂ (SAB) và BC ⊂ (SBC)

D. BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA

* Đáp án

D

* Hướng dẫn giải

Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này.

Phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC)

Phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC)

Phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)

Đáp án D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Mặt phẳng vuông góc có đáp án !!

Số câu hỏi: 14

Copyright © 2021 HOCTAP247