Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4

Câu hỏi :

Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau ?

A. 156

B. 144

C. 96

D. 134

* Đáp án

* Hướng dẫn giải

Gọi số cần tìm có dạng abcd¯ với a,b,c,dA=0,1,2,3,4,5.

abcd¯ là số chẵn   d0,2,4.

TH1. Nếu  d = 0 số cần tìm là abc0¯. Khi đó:A\0,  a,  b

a được chọn từ tập A\0 nên có 5 cách chọn.

b được chọn từ tập A\0,  a nên có 4 cách chọn.

c được chọn từ tập  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 = 60  số có dạng abc0¯.

TH2. Nếu d=2,4  d: có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d), b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 =  96 số

Vậy có tất cả 60 + 96 = 156 số

Chọn đáp án A.

Copyright © 2021 HOCTAP247