Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số có 2011 chữ số

Câu hỏi :

Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số có 2011 chữ số và trong đó có ít nhất hai chữ số 9.

A. 92011-2019.92010+89

B. 92011-2.92010+89

C. 92011-92010+89

D. 92011-19.92010+89

* Đáp án

* Hướng dẫn giải

Chọn đáp án A.

Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

A={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

Với mỗi số thuộc A có m chữ số m2008 thì ta có thể bổ sung thêm 2011-m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng a1a2...a2011¯; ai0,1,2,3,...,9

A0={aA|mà trong a không có chữ số 9}

 A1={aA|mà trong a có đúng 1 chữ số 9}

Ta thấy tập A có 1+92011-19 phần tử

Tính số phần tử của A0

Với xA0x=a1...a2011¯; ai0,1,2,...8 i=1,2010¯ và a2011=9-r vi r1;9, ri=12010ai.

Từ đó ta suy ra A0 có 92010 phần tử

Tính số phần tử của A1

Để lập số của thuộc tập A1 ta thực hiện liên tiếp hai bước sau

Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập 0,1,2,...,8 và tổng các chữ số chia hết cho 9. Số các dãy là 92009

Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9

Do đó A1 có 2010.92009 phần tử.

Vậy số các số cần lập là: 

1+92011-19-92010-2010.92009=92011-2019.92010+89

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Quy tắc đếm có đáp án (Vận dụng) !!

Số câu hỏi: 10

Copyright © 2021 HOCTAP247