Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau

Câu hỏi :

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1,2,3,4,5,6,7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng.

A. 935.

B. 1635.

C. 2235.

D. 1935.

* Đáp án

* Hướng dẫn giải

Đáp án cần chọn là: C

Số tự nhiên có 4 chữ số khác nhau là A74=840⇒n(S)=840.

Xét phép thử: “Chọn ngẫu nhiên một số thuộc S”. Ta có: n(Ω)= C8401=840.

Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.

+ Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có 4!=24 cách chọn.

+ Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ

C31 cách chọn 1 chữ số chẵn và C43 cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có C31.C43.4!=288 cách chọn thỏa mãn.

+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.

* Chọn 2 số chẵn, 2 số lẻ trong tập hợp{1;2;3;4;5;6;7}có C32.C42 cách.

Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn

* Suy ra trường hợp 3 có C32.C42.12=216 cách chọn.

Suy ra n(A)=24+288+216=528

Vậy xác suất cần tìm P(A)=n(A)n(Ω)=528840=2235.

Copyright © 2021 HOCTAP247