A.
B. .
C. .
D. .
Đáp án cần chọn là: C
Áp dụng BĐT tam giác: ∣a−b∣<c<a+b (với a, b, c là độ dài 3 cạnh của tam giác).
+ Tất cả các bộ ba khác nhau có giá trị bằng số đo 3 cạnh là:
(2;3;4),(2;4;5),(2;5;6),(3;4;5),(3;4;6),(3;5;6),(4;5;6).
⇒ Có 7 tam giác không cân.
+ Xét các tam giác cân có cạnh đáy bằng a, cạnh bên bằng b⇒a<2b
TH1: b=1⇒a<2⇒a=1: Có 1 tam giác cân.
TH2: b=2⇒a<4⇒a∈{1;2;3}: Có 3 tam giác cân.
TH3: b=3⇒ a< 6⇒a∈{1;2;3;4;5}: Có 5 tam giác cân.
TH4: b=4⇒a<8⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
TH5: b=5⇒a<10⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
TH6: b=6⇒a<12⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
⇒ Có1+3+5+6.3=27 tam giác cân.
⇒ Không gian mẫu: n(Ω)=7+27=34
Gọi A là biến cố: “phần tử được chọn là một tam giác cân”⇒ n(A)=
Vậy xác suất của biến cố A là P(A)=.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247