Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, cạnh bên SA vuông góc

Câu hỏi :

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, AB = BC = a và SA = a. Góc giữa hai mặt phẳng (SAC) và (SBC) bằng

A. 600

B. 900

C. 300

D. 450

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Gọi H là trung điểm cạnh AC

Ta có (SAC)(ABC) (vì SA(ABC)) và BHAC ⇒ BH(SAC)

Trong mặt phẳng (SAC), kẻ HKSC thì SC(BHK) ⇒ SCBK

⇒ (SAC);(SBC^)=(SKH^)=φ

Mặt khác

Tam giác ABC vuông cân tại B có AB = BC = a nên AC = a2 và BH = a22

Hai tam giác CKH và CAS đồng dạng nên HK = HC.SASC HC.SASA2+AC2=a23

Tam giác BHK vuông tại H có tanφBHBK=3φ=600

Vậy (SAC);(SBC^)=600

Copyright © 2021 HOCTAP247