Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a(căn bậc hai của 2)

Câu hỏi :

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a2, biết các cạnh bên tạo với đáy một góc 600. Giá trị lượng giác tang của góc giữa hai mặt phẳng (SAC) và (SCD) bằng

A. 233

B. 213

C. 217

D. 32

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Kẻ OKSC.

Do S.ABCD là hình chóp đều và ABCD là hình vuông nên SO(ABCD); BD(SAC) ⇒ SCBD Suy ra SC

(BKD) ⇒ KDSC

Vậy góc giữa hai mặt phẳng (SAC) và (SCD) là OKD^ và tanOKD^=ODOK (do ΔKOD vuông ở O): ABCD là hình vuông cạnh a2 nên AC = 2a ⇒ OA = OC = OD = a

Trong hình chóp đều S.ABCD, cạnh bên tạo với đáy một góc 600 nên

Copyright © 2021 HOCTAP247