A. \({x_1} = 5 - \frac{{11\pi }}{6};{x_2} = 5 - \frac{{13\pi }}{6}.\)
B. \({x_1} = 5 + \frac{{11\pi }}{6};{x_2} = 5 - \frac{{13\pi }}{6}.\)
C. \({x_1} = 5 - \frac{{11\pi }}{6};{x_2} = 5 + \frac{{13\pi }}{6}.\)
D. \({x_1} = 5 + \frac{{11\pi }}{6};{x_2} = 5 + \frac{{13\pi }}{6}.\)
A
\(\cos (x - 5) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos (x - 5) = \cos \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l}x - 5 = \frac{\pi }{6} + k2\pi \\x - 5 = - \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5 + \frac{\pi }{6} + k2\pi \\x = 5 - \frac{\pi }{6} + k2\pi \end{array} \right.\)
Với điều kiện \( - \pi < x < \pi \) ta lần lượt có:
\(\begin{array}{l} + )\,\, - \pi < 5 + \frac{\pi }{6} + k2\pi < \pi \Leftrightarrow - \pi - 5 - \frac{\pi }{6} < k2\pi < \pi - 5 - \frac{\pi }{6}\\ \Leftrightarrow - \frac{1}{2} - \frac{5}{{2\pi }} - \frac{1}{{12}} \approx - 1,3 < k < \frac{1}{2} - \frac{5}{{2\pi }} - \frac{1}{{12}} \approx - 0,3\\ \Rightarrow k = - 1 \Rightarrow x = 5 + \frac{\pi }{6} - 2\pi = 5 - \frac{{11\pi }}{6}.\end{array}\)
\(\begin{array}{l} + )\,\, - \pi < 5 - \frac{\pi }{6} + k2\pi < \pi \Leftrightarrow - \pi - 5 + \frac{\pi }{6} < k2\pi < \pi - 5 + \frac{\pi }{6}\\ \Leftrightarrow - \frac{1}{2} - \frac{5}{{2\pi }} + \frac{1}{{12}} \approx - 1,1 < k < \frac{1}{2} - \frac{5}{{2\pi }} + \frac{1}{{12}} \approx - 0,4\\ \Rightarrow k = - 1 \Rightarrow x = 5 - \frac{\pi }{6} - 2\pi = 5 - \frac{{13\pi }}{6}.\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247