Cho hàm số \(f(x) = \left\{ {{{(x - 3)}^2}} }}{{x - \ne = Tìm tất cả các giá trị của tham số thực m để hàm số liên tục tại x = 3.

Câu hỏi :

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{\sqrt {{{(x - 3)}^2}} }}{{x - 3}}\,\,\,\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 3\end{array} \right.\). Tìm tất cả các giá trị của tham số thực m để hàm số liên tục tại x = 3.

A. \(m \in \emptyset\)

B. \(m \in\mathbb R\)

C. m = 1

D. m = -1

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \dfrac{{\sqrt {{{\left( {x - 3} \right)}^2}} }}{{x - 3}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\left| {x - 3} \right|}}{{x - 3}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left\{ \begin{array}{l}1\,\,\left( {khi\,x > 3} \right)\\ - 1\,\,\left( {khi\,\,x < 3} \right)\end{array} \right.\end{array}\)

Ta thấy \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right)\) không tồn tại giá trị của m đề hàm số liên tục khi x=3

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 11 năm 2021

Số câu hỏi: 511

Copyright © 2021 HOCTAP247