Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?

Câu hỏi :

Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4}  - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?

A. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 0.

B. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 2. 

C. Giới hạn của \(f(x)\) khi \(x \to \infty \) là -2.

D. Không tồn tại giới hạn của \(f(x)\) khi \(x \to \infty \). 

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } (\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} )\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{{4x}}{{x\left( {\sqrt {1 + \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} } \right)}}\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{4}{{\left( {\sqrt {1 + \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} } \right)}} = 2\end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 11 năm 2021

Số câu hỏi: 511

Copyright © 2021 HOCTAP247