Cho hàm = \left\{ + + > 1}\\{,x < 1}\\{,x = Tìm k để \(f(x)\) gián đoạn tại x = 1

Câu hỏi :

Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{{{(x + 1)}^2}\,\,}\\{{x^2} + 3\,\,}\\{{k^2}}\end{array}} \right.\begin{array}{*{20}{c}}{,x > 1}\\{,x < 1}\\{,x = 1}\end{array}\). Tìm k để \(f(x)\) gián đoạn tại x = 1

A. \(k \ne  \pm 2\)

B. \(k \ne 2\)

C. \(k \ne  - 2\)

D. \(k \ne  \pm 1\)

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} {\left( {x + 1} \right)^2} = 4\\\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 3} \right) = 4\end{array}\)

Để f(x) gián đoạn tại x = 1 thì \({k^2} \ne 4 \Leftrightarrow k \ne  \pm 2\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 11 năm 2021

Số câu hỏi: 511

Copyright © 2021 HOCTAP247