Giá trị của giới hạn \(\lim bằng?

Câu hỏi :

Giá trị của giới hạn \(\lim \frac{1^{2}+2^{2}+\ldots+n^{2}}{n\left(n^{2}+1\right)}\) bằng?

A. 2

B. 1

C. \(\frac{1}{2}\)

D. \(\frac{1}{3}\)

* Đáp án

D

* Hướng dẫn giải

Đặt \(P(n)=\frac{2 n^{3}-3 n^{2}+n}{6}=\frac{n(n-1)(2 n+1)}{6}\) thì ta có

\(\begin{aligned} 1^{2}+2^{2}+3^{2}+\cdots+n^{2} &=(P(2)-P(1))+(P(3)-P(2))+\cdots+(P(n+1)-P(n)) \\ &=P(n+1)-P(1)=\frac{n(n+1)(2 n+3)}{6} \end{aligned}\)

Do đó \(\lim \frac{1^{2}+2^{2}+\ldots+n^{2}}{n\left(n^{2}+1\right)}=\lim \frac{n(n+1)(2 n+3)}{6 n\left(n^{2}+1\right)}=\frac{2}{6}=\frac{1}{3}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 11 năm 2021

Số câu hỏi: 511

Copyright © 2021 HOCTAP247