A. Hàm số liên tục tại \(x_{0}=0.\)
B. Hàm số liên tục tại mọi điểm như gián đoạn tại \(x_{0}=0.\)
C. Hàm số không liên tục tại \(x_{0}=0\)
D. Tất cả đều sai
A
\(\begin{array}{l} \text { Ta có: } f(0)=2 \\ \begin{array}{l} \lim \limits_{x \rightarrow 0} f(x)=\lim \limits_{x \rightarrow 0} \frac{x+1+\sqrt[3]{x-1}}{x}=\lim\limits _{x \rightarrow 0}\left(1+\frac{1+\sqrt[3]{x-1}}{x}\right) \\ =\lim\limits _{x \rightarrow 0}\left(1+\frac{1}{1-\sqrt[3]{x-1}+x-1}\right)=2=f(0) \end{array} \end{array}\)
Vậy hàm số liên tục tại \(x_{0}=0.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247