A. Số hạng thứ 2018
B. Số hạng thứ 2017
C. Số hạng thứ 2019
D. Số hạng thứ 2020
A
Ta có \({u_n} = {u_1}{q^{n - 1}} = - {\left( { - \frac{1}{{10}}} \right)^{n - 1}}\).
Khi đó \({u_n} = \frac{1}{{{{10}^{2017}}}} \Leftrightarrow - {\left( { - \frac{1}{{10}}} \right)^{n - 1}} = \frac{1}{{{{10}^{2017}}}} \Leftrightarrow n = 2018\).
Do đó \(\frac{1}{{{{10}^{2017}}}}\) là số hạng thứ 2018 của (un).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247