A. 1
B. 2
C. \(\dfrac{2}{9}\)
D. \(\dfrac{1}{9}\)
C
\(\eqalign{
& \mathop {\lim }\limits_{x \to 0} f(x) = \mathop {\lim }\limits_{x \to 0} {{\root 3 \of {2x + 8} - 2} \over {\sqrt {3x + 4} - 2}} \cr
& = \mathop {\lim }\limits_{x \to 0} {{\left( {\root 3 \of {2x + 8} - 2} \right)\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)\left( {\sqrt {3x + 4} - 2} \right)} \over {\left( {3x + 4 - 4} \right)\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} {{2x\left( {\sqrt {3x + 4} - 2} \right)} \over {3x\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} {{2\left( {\sqrt {3x + 4} - 2} \right)} \over {3\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)}} \cr
& = {{2(2 + 2)} \over {3(4 + 4 + 4)}} = {8 \over {36}} = {2 \over 9} \cr} \)
Để hàm số liên tục tại x = 0 thì \(f(0) = \dfrac{2 }{ 9}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247