Cho hàm số \(f(x) = \frac{{\sin 3x}}{3} - \cos x - \sqrt 3 \left( {\sin x - \frac{{\cos 3x}}{3}} \right)\)Giải phương trình \(f(x)

Câu hỏi :

Cho hàm số \(f(x) = \frac{{\sin 3x}}{3} - \cos x - \sqrt 3 \left( {\sin x - \frac{{\cos 3x}}{3}} \right)\)Giải phương trình \(f'(x) = 0\)

A. \(\left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x =  - \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)\)

B. \(\begin{array}{l}
f'(x) = 0\\
\left[ \begin{array}{l}
x =  - \frac{\pi }{{12}} + k\pi \\
x =  - \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)

C. \(\begin{array}{l}
f'(x) = 0\\
\left[ \begin{array}{l}
x =  - \frac{\pi }{{12}} + k\pi \\
x = \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)

D. \(\begin{array}{l}
f'(x) = 0\\
\left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}
f'(x) = \cos 3x + \sin x - \sqrt 3 \left( {\cos x + \sin 3x} \right)\\
f'(x) = 0 \Leftrightarrow \cos 3x + \sin x - \sqrt 3 \left( {\cos x + \sin 3x} \right) = 0\\
 \Leftrightarrow \sin x - \sqrt 3 \cos x = \sqrt 3 \sin 3x - \cos 3x\\
 \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 3 }}{2}\sin 3x - \frac{1}{2}\cos 3x\\
 \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right)\\
 \Leftrightarrow \left[ \begin{array}{l}
x - \frac{\pi }{3} = 3x - \frac{\pi }{6} + k2\pi \\
x - \frac{\pi }{3} =  - 3x + \frac{\pi }{6} + k2\pi 
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x =  - \frac{\pi }{{12}} + k\pi \\
x = \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)

Copyright © 2021 HOCTAP247