A. \(\frac{{\cos x + \sin x}}{{\sin x - \cos x}}\)
B. \(\frac{{ - 1}}{{{{\cos }^2}\left( {x + \frac{\pi }{4}} \right)}}\)
C. \(\frac{{ 1}}{{{{\cos }^2}\left( {x + \frac{\pi }{4}} \right)}}\)
D. \( - \frac{{2\sin x}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)
A. \(\frac{{3{{\sin }^2}\left( {2x + 1} \right)}}{{2\sqrt {{{\sin }^3}\left( {2x + 1} \right)} }}\)
B. \(3\sqrt {\sin \left( {2x + 1} \right)} .c{\rm{os}}\left( {2x + 1} \right)\)
C. \(\frac{{3{{\sin }^2}2\left( {2x + 1} \right)}}{{2\sqrt {{{\sin }^3}\left( {2x + 1} \right)} }}\)
D. \(3\sqrt {\sin \left( {2x + 1} \right)} \)
A. \(\frac{{15}}{{{{\left( {x - 2} \right)}^2}}}{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
B. \(- 5{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
C. \( 5{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
D. \(\frac{{-15}}{{{{\left( {x - 2} \right)}^2}}}{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
A. \(\frac{1}{{{{\sin }^2}x.\sqrt {3 + 2\tan x} }}\)
B. \(\frac{-1}{{{{\sin }^2}x.\sqrt {3 + 2\tan x} }}\)
C. \(\frac{1}{{{\rm{co}}{{\rm{s}}^2}x.\sqrt {3 + 2\tan x} }}\)
D. \(\frac{1}{{\cos x.\sqrt {3 + 2\tan x} }}\)
A. -6cos5 xsinx
B. 6cos5 xsinx
C. 6sin5 xcosx
D. 6cos5 x
A. \(\frac{{2x - 1}}{{{{\sin }^2}\left( {{x^2} - x + 1} \right)}}\)
B. \(-\frac{{2x - 1}}{{\sin \left( {{x^2} - x + 1} \right)}}\)
C. \(\frac{{2x - 1}}{{{\rm{co}}{{\rm{s}}^2}\left( {{x^2} - x + 1} \right)}}\)
D. \(\frac{{1 - 2x}}{{{{\sin }^2}\left( {{x^2} - x + 1} \right)}}\)
A.
\(\left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = - \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)\)
B.
\(\begin{array}{l}
f'(x) = 0\\
\left[ \begin{array}{l}
x = - \frac{\pi }{{12}} + k\pi \\
x = - \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)
C.
\(\begin{array}{l}
f'(x) = 0\\
\left[ \begin{array}{l}
x = - \frac{\pi }{{12}} + k\pi \\
x = \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)
D.
\(\begin{array}{l}
f'(x) = 0\\
\left[ \begin{array}{l}
x = \frac{\pi }{{12}} + k\pi \\
x = \frac{{3\pi }}{8} + k\frac{\pi }{2}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)
A. \(\cos 2x - \sin \frac{{{x^2} + 1}}{2} - \frac{1}{{{{\cos }^2}\sqrt x }}\)
B. \(2\cos 2x - x\sin \frac{{{x^2} + 1}}{2} - \frac{1}{{2\sqrt x .{{\cos }^2}\sqrt x }}\)
C. \( - 2\cos x + x\sin \frac{{{x^2} + 1}}{2} - \frac{1}{{2\sqrt x .{{\cos }^2}\sqrt x }}\)
D. \(2\cos 2x + x\sin \frac{{{x^2} + 1}}{2} - \frac{1}{{2\sqrt x .{{\cos }^2}\sqrt x }}\)
A. \(\cos 2x.4{\cos ^2}x + \frac{1}{{{{\sin }^2}\frac{1}{{{x^2}}}}} - \cos 2x.4{\sin ^3}x\)
B. \(2\cos 4x + \frac{2}{{{x^3}.{{\sin }^2}\frac{1}{{{x^2}}}}}\)
C. \(2\cos 4x + \frac{2}{{x.{{\sin }^2}\frac{1}{{{x^2}}}}}\)
D. \(2\cos 4x - \frac{2}{{{x^3}.{{\sin }^2}\frac{1}{{{x^2}}}}}\)
A. \(\frac{8}{9}\)
B. \(-\frac{9}{8}\)
C. \(\frac{9}{8}\)
D. \(-\frac{8}{9}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247