A. \({u_{2018}} = 7 + 5\sqrt 2 \)
B. \({u_{2018}} = 2\)
C. \({u_{2018}} = 7 - 5\sqrt 2 \)
D. \({u_{2018}} = 7 + \sqrt 2 \)
A
Ta có \(\tan \frac{\pi }{8} = \sqrt 2 - 1\) suy ra \({u_{n + 1}} = \frac{{{u_n} + \tan \frac{\pi }{8}}}{{1 - \tan \frac{\pi }{8}.{u_n}}}\)
Đặt \(\tan \varphi = 2\) suy ra \({u_1} = \tan \varphi \to {u_2} = \frac{{{u_1} + \tan \frac{\pi }{8}}}{{1 - \tan \frac{\pi }{8}.{u_1}}} = \frac{{\tan \varphi + \tan \frac{\pi }{8}}}{{1 - \tan \varphi .\tan \frac{\pi }{8}}} = \tan \left( {\varphi + \frac{\pi }{8}} \right)\)
Do đó \({u_3}\left( {\tan \varphi + 2.\frac{\pi }{8}} \right) \to {u_n}\left( {\tan \varphi + n.\frac{\pi }{8}} \right)\)
Vậy \({u_{2018}} = \tan \left( {\varphi + 2017.\frac{\pi }{8}} \right) = \tan \left( {\varphi + \frac{\pi }{8}} \right) = {u_2} = \frac{{2 + \sqrt 2 - 1}}{{1 - 2\left( {\sqrt 2 - 1} \right)}} = 7 + 5\sqrt 2 \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247