A. \(\lim n\sqrt {{u_n}} = \sqrt 2 .\)
B. \(\lim n\sqrt {{u_n}} = \frac{1}{{\sqrt 3 }}.\)
C. \(\lim n\sqrt {{u_n}} = \sqrt 3 .\)
D. \(\lim n\sqrt {{u_n}} = \frac{1}{{\sqrt 2 }}.\)
D
Xét \(\left. \begin{array}{l}
a = 4{n^2} + 1\\
b = 2n
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
a \pm 2b = {\left( {2n \pm 1} \right)^2}\\
a = {b^2} + 1
\end{array} \right.\)
Đặt \(\left. \begin{array}{l}
a = 4{n^2} + 1\\
b = 2n
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
a \pm 2b = {\left( {2n \pm 1} \right)^2}\\
a = {b^2} + 1
\end{array} \right.\)
\(\begin{array}{l}
\Rightarrow g\left( n \right) = \frac{{{{\left( {a - b} \right)}^2} + 1}}{{{{\left( {a + b} \right)}^2} + 1}} = \frac{{{a^2} - 2ab + {b^2} + 1}}{{{a^2} + 2ab + {b^2} + 1}} = \frac{{{a^2} - 2ab + a}}{{{a^2} + 2ab + a}} = \frac{{a - 2b + 1}}{{a + 2b + 1}} = \frac{{{{\left( {2n - 1} \right)}^2} + 1}}{{{{\left( {2n + 1} \right)}^2} + 1}}\\
\Rightarrow {u_n} = \prod\limits_{i = 1}^n {g\left( i \right)} = \frac{2}{{10}}.\frac{{10}}{{26}}...\frac{{{{\left( {2n - 1} \right)}^2} + 1}}{{{{\left( {2n + 1} \right)}^2} + 1}} = \frac{2}{{{{\left( {2n + 1} \right)}^2} + 1}}\\
\Rightarrow \lim n\sqrt {{u_n}} = \lim \sqrt {\frac{{2{n^2}}}{{4{n^2} + 4n + 2}}} = \frac{1}{{\sqrt 2 }}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247