Đặt \(f\left( n \right) = {\left( {{n^2} + n + 1} \right)^2} + 1.

Câu hỏi :

Đặt \(f\left( n \right) = {\left( {{n^2} + n + 1} \right)^2} + 1.\) Xét dãy số \(\left( {{u_n}} \right)\) sao cho \({u_n} = \frac{{f\left( 1 \right).f\left( 3 \right).f\left( 5 \right)...f\left( {2n - 1} \right)}}{{f\left( 2 \right).f\left( 4 \right).f\left( 6 \right)...f\left( {2n} \right)}}.\) Tính \(\lim n\sqrt {{u_n}} .\)

A. \(\lim n\sqrt {{u_n}}  = \sqrt 2 .\)

B. \(\lim n\sqrt {{u_n}}  = \frac{1}{{\sqrt 3 }}.\)

C. \(\lim n\sqrt {{u_n}}  = \sqrt 3 .\)

D. \(\lim n\sqrt {{u_n}}  = \frac{1}{{\sqrt 2 }}.\)

* Đáp án

D

* Hướng dẫn giải

Xét \(\left. \begin{array}{l}
a = 4{n^2} + 1\\
b = 2n
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
a \pm 2b = {\left( {2n \pm 1} \right)^2}\\
a = {b^2} + 1
\end{array} \right.\)

Đặt \(\left. \begin{array}{l}
a = 4{n^2} + 1\\
b = 2n
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
a \pm 2b = {\left( {2n \pm 1} \right)^2}\\
a = {b^2} + 1
\end{array} \right.\)

\(\begin{array}{l}
 \Rightarrow g\left( n \right) = \frac{{{{\left( {a - b} \right)}^2} + 1}}{{{{\left( {a + b} \right)}^2} + 1}} = \frac{{{a^2} - 2ab + {b^2} + 1}}{{{a^2} + 2ab + {b^2} + 1}} = \frac{{{a^2} - 2ab + a}}{{{a^2} + 2ab + a}} = \frac{{a - 2b + 1}}{{a + 2b + 1}} = \frac{{{{\left( {2n - 1} \right)}^2} + 1}}{{{{\left( {2n + 1} \right)}^2} + 1}}\\
 \Rightarrow {u_n} = \prod\limits_{i = 1}^n {g\left( i \right)}  = \frac{2}{{10}}.\frac{{10}}{{26}}...\frac{{{{\left( {2n - 1} \right)}^2} + 1}}{{{{\left( {2n + 1} \right)}^2} + 1}} = \frac{2}{{{{\left( {2n + 1} \right)}^2} + 1}}\\
 \Rightarrow \lim n\sqrt {{u_n}}  = \lim \sqrt {\frac{{2{n^2}}}{{4{n^2} + 4n + 2}}}  = \frac{1}{{\sqrt 2 }}
\end{array}\)

Copyright © 2021 HOCTAP247