Tìm \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - \sqrt {{x^2} + x + 2} }}{{x - 1}}?\)

Câu hỏi :

Tìm \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - \sqrt {{x^2} + x + 2} }}{{x - 1}}?\)

A. \(\frac{1}{{12}}\)

B. \( + \infty \)

C. \(\frac{{ - 3}}{2}\)

D. \(\frac{{ - 2}}{3}\)

* Đáp án

D

* Hướng dẫn giải

Ta có:\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - \sqrt {{x^2} + x + 2} }}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - 2}}{{x - 1}} - \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[{}]{{{x^2} + x + 2}} - 2}}{{x - 1}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{\left( {x + 7} \right)}} + 4}} - \mathop {\lim }\limits_{x \to 1} \frac{{x + 2}}{{\sqrt[{}]{{{x^2} + x + 2}} + 2}} = \frac{1}{{12}} - \frac{3}{4} =  - \frac{2}{3}\)

.

Copyright © 2021 HOCTAP247