A. \(P = \frac{1}{2}\)
B. \(P=5\)
C. \(P=17\)
D. \(P = - \frac{1}{2}\)
D
Ta có \(f\left( 9 \right) = 12,\mathop {\lim }\limits_{x \to {9^ - }} {\mkern 1mu} f\left( x \right) = \mathop {\lim }\limits_{x \to {9^ - }} {\mkern 1mu} \left( {ax - 2b} \right) = 9x - 2b,ycbt \Rightarrow \mathop {\lim }\limits_{x \to {9^ - }} {\mkern 1mu} f\left( x \right) = f\left( 9 \right) \Leftrightarrow 9a - 2b = 12\)
\(\mathop {\lim }\limits_{x \to {9^ - }} {\mkern 1mu} f\left( x \right) = \mathop {\lim }\limits_{x \to {9^ - }} {\mkern 1mu} \frac{{ax - 2b - 12}}{{\sqrt[3]{{x - 1}} - 2}} = \mathop {\lim }\limits_{x \to {9^ - }} {\mkern 1mu} \frac{{\left( {ax - 2b - 12} \right)\left[ {\sqrt[3]{{x - 1}} + 2\sqrt[3]{{x - 1}} + 4} \right]}}{{x - 9}} = 12 \Rightarrow \left\{ \begin{array}{l}
a = 1\\
- 2b - 12 = - 9
\end{array} \right.\)
Suy ra \(a = 1,b = - \frac{3}{2}.\). Nên \(P = a + b = - \frac{1}{2}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247