Nghiệm của phương trình \(\sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\) là:

Câu hỏi :

Nghiệm của phương trình \(\sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\) là:

A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{3} + k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)           

B. \(\left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)             

C. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{{2\pi }}{3} + k\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)    

D. \(\left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\) 

* Đáp án

B

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\x + \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Chọn B.

Copyright © 2021 HOCTAP247