A. \(C_{30}^2.C_{20}^1\)
B. \(C_{50}^3 - C_{20}^3\)
C. \(C_{50}^3 - C_{30}^3\)
D. \(C_{50}^3.C_{30}^3\)
A. \(4\)
B. \(1\)
C. \(5\)
D. \( - 5\)
A. \(\overrightarrow {OM} = k\overrightarrow {OM'} \)
B. \(\overrightarrow {OM'} = k\overrightarrow {OM} \)
C. \(\overrightarrow {OM'} = - k\overrightarrow {OM} \)
D. \(\overrightarrow {OM'} = \left| k \right|\overrightarrow {OM} \)
A. \(x = \pm \dfrac{{5\pi }}{6} + k2\pi ,\,\,k \in \mathbb{Z}\)
B. \(x = \pm \dfrac{{2\pi }}{3} + k2\pi ,\,\,k \in \mathbb{Z}\)
C. \(x = \pm \dfrac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}\)
D. \(x = \pm \dfrac{\pi }{6} + k\pi ,\,\,k \in \mathbb{Z}\)
A. \(M'\left( { - \dfrac{1}{2};1} \right)\)
B. \(M'\left( {1; - \dfrac{1}{2}} \right)\)
C. \(M'\left( {\dfrac{1}{2}; - 1} \right)\)
D. \(M'\left( { - 1;\dfrac{1}{2}} \right)\)
A. \(D = \mathbb{R}\backslash \left\{ { \pm \dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
B. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)
C. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
D. \(D = \mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{6} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
A. \(x = \dfrac{\pi }{6}\)
B. \(x = \dfrac{\pi }{4}\)
C. \(x = - \dfrac{\pi }{2}\)
D. \(x = \dfrac{\pi }{2}\)
A. \(x = - \dfrac{\pi }{6} + k\pi ,\,\,k \in \mathbb{Z}\)
B. \(x = - \dfrac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}\)
C. \(x = - \dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}\)
D. \(x = \dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}\)
A. \(SM\)
B. \(SA\)
C. \(MN\)
D. \(SN\)
A. \(M'\left( {2; - 5} \right)\)
B. \(M'\left( {4; - 1} \right)\)
C. \(M'\left( {2;5} \right)\)
D. \(M'\left( { - 2; - 5} \right)\)
A. \(15\)
B. \(13\)
C. \(20\)
D. \(280\)
A. \(22644\)
B. \(24642\)
C. \(26442\)
D. \(44622\)
A. \(x = \dfrac{\pi }{3} + k2\pi ,\,\,x = \dfrac{{5\pi }}{6} + k2\pi \).
B. \(x = \dfrac{\pi }{2} + k\pi ,\,\,x = \dfrac{{5\pi }}{6} + k\pi \).
C. \(x = \dfrac{\pi }{2} + k2\pi ,\,\,x = \dfrac{{\pi }}{6} + k2\pi \).
D. \(x = \dfrac{\pi }{3} + k2\pi ,\,\,x = \dfrac{{\pi }}{6} + k2\pi \).
A. \(x = \dfrac{\pi }{{12}} + k2\pi ;\,\,x = \dfrac{{9\pi }}{{12}} + k2\pi \).
B. \(x = \dfrac{\pi }{{9}} + k2\pi ;\,\,x = \dfrac{{19\pi }}{{12}} + k2\pi \).
C. \(x = \dfrac{\pi }{{12}} + k2\pi ;\,\,x = \dfrac{{19\pi }}{{12}} + k2\pi \).
D. \(x = \dfrac{\pi }{{12}} + k\pi ;\,\,x = \dfrac{{19\pi }}{{12}} + k\pi \).
A. 27300
B. 3003
C. 86450
D. 116753
A. \(x + y - 4 = 0\)
B. \(x - y - 4 = 0\)
C. \(x + y - 2 = 0\)
D. \(x - y - 2 = 0\)
A. \(f\left( x \right) = 1 + \tan x\)
B. \(f\left( x \right) = {x^2} + \cos \left( {3x} \right)\)
C. \(f\left( x \right) = {x^2}\sin \left( {2x} \right)\)
D. \(f\left( x \right) = - \cot x\)
A. \(y = \sin \sqrt x \)
B. \(y = \dfrac{1}{{2 - \cos x}}\)
C. \(y = {\tan ^2}x\)
D. \(y = \dfrac{{1 - \sin x}}{{1 + \sin x}}\)
A. \(0 \le a \le 2,\,\,a \ne 1\)
B. \(\left[ \begin{array}{l}a \le 0\\a \ge 2\end{array} \right.\)
C. \(a \ge 2\)
D. \(a \le 0\)
A. Điểm K (với O là trung điểm của BD và \(K = SO \cap AI\))
B. Điểm M (với \(O = AC \cap BD;{\mkern 1mu} {\mkern 1mu} M = SO \cap AI\))
C. Điểm N (với \(O = AC \cap BD;\) N là trung điểm SO)
D. Điểm I.
A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{3} + k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
B. \(\left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
C. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{{2\pi }}{3} + k\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
D. \(\left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
A. \(\dfrac{\pi }{4}\)
B. \(\dfrac{{7\pi }}{4}\)
C. \(\dfrac{{3\pi }}{4}\)
D. \( - \dfrac{\pi }{4}\)
A. \(y = \cot x\) nghịch biến trên khoảng \(\left( {\dfrac{\pi }{2};\pi } \right)\).
B. \(y = \sin x\) nghịch biến trên khoảng \(\left( {\dfrac{\pi }{2};\pi } \right)\).
C. \(y = - \cos x\) đồng biến trên khoảng \(\left( {\dfrac{\pi }{3};\dfrac{\pi }{2}} \right)\).
D. \(y = - tanx\) đồng biến trên khoảng \(\left( {\dfrac{\pi }{3};\dfrac{\pi }{2}} \right)\).
A. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
B. \(\left[ \begin{array}{l}x = k\pi \\x = \pm \dfrac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
C. \(\left[ \begin{array}{l}x = k\pi \\x = \pm \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
D. \(\left[ \begin{array}{l}x = k2\pi \\x = \pm \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
A. \( - \dfrac{1}{2}\)
B. \(\dfrac{\pi }{3}\)
C. \(\dfrac{1}{2}\)
D. \( - \dfrac{\pi }{3}\)
A. \((C'):{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\)
B. \((C'):{\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 9\)
C. \((C'):{\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} =9\)
D. \((C'):{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} =3.\)
A. \(x = \dfrac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\)
B. \(x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
C. \(x = \dfrac{{k\pi }}{8}\,\,\left( {k \in \mathbb{Z}} \right)\)
D. \(x = \dfrac{{k\pi }}{4}\,\,\left( {k \in \mathbb{Z}} \right)\)
A. \(0\)
B. \(2\)
C. \(3\)
D. \(1\)
A. \(y = \tan \left( {\dfrac{x}{2}} \right)\)
B. \(y = \sin 2x\)
C. \(y = \cos \left( {\dfrac{x}{2}} \right)\)
D. \(y = \cot 2x\)
A. \(SA\)
B. \(SN\)
C. \(SM\)
D. \(SO\)
A. \(2021\)
B. \(2020\)
C. \(4038\)
D. \(4040\)
A. \(D = \mathbb{R}\backslash \left\{ {\dfrac{{\pi }}{4};\,\,k \in \mathbb{Z}} \right\}\).
B. \(D = \mathbb{R}\backslash \left\{ {\dfrac{{k\pi }}{2};\,\,k \in \mathbb{Z}} \right\}\).
C. \(D = \mathbb{R}\)
D. \(D = \mathbb{R}\backslash \left\{ {\dfrac{{k\pi }}{4};\,\,k \in \mathbb{Z}} \right\}\).
A. \(x = \dfrac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \dfrac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \dfrac{\pi }{2} + 2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(x = \dfrac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
A. \(x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{5},\,k \in \mathbb{Z}\)
B. \(x = \dfrac{\pi }{{15}} + k\pi ,\,k \in \mathbb{Z}\)
C. \(x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{2},\,k \in \mathbb{Z}\)
D. \(x = \dfrac{\pi }{5} + k\dfrac{\pi }{5},\,k \in \mathbb{Z}\)
A. \( - 3 \le m \le 2\)
B. \(m > 2\)
C. \(m \ge - 3\)
D. \(\dfrac{2}{{11}} \le m \le 2\)
A. \(x = - \dfrac{\pi }{{12}} + k2\pi ,\;x = \dfrac{{5\pi }}{{12}} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)
B. \(x = - \dfrac{\pi }{4} + k2\pi ,\;x = \dfrac{{3\pi }}{4} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)
C. \(x = \dfrac{\pi }{3} + k2\pi ,\;x = \dfrac{{2\pi }}{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)
D. \(x = - \dfrac{\pi }{4} + k2\pi ,\;x = - \dfrac{{5\pi }}{4} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)
A. \(x = \dfrac{\pi }{3}.\)
B. \(x = \dfrac{\pi }{{12}}.\)
C. \(x = \dfrac{\pi }{6}.\)
D. \(x = \dfrac{{5\pi }}{6}.\)
A. \(\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 10\)
B. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 5\)
C. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\)
D. \(\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\)
A. \({\left( {x - 6} \right)^2} + {\left( {y - 9} \right)^2} = 9\)
B. \({x^2} + {y^2} = 9\)
C. \({\left( {x - 6} \right)^2} + {\left( {y + 4} \right)^2} = 9\)
D. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\)
A. 3
B. 1
C. 2
D. 0
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247