A. \(\left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
B. \(\left[ \begin{array}{l}x = k\pi \\x = \pm \dfrac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
C. \(\left[ \begin{array}{l}x = k\pi \\x = \pm \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
D. \(\left[ \begin{array}{l}x = k2\pi \\x = \pm \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
C
Ta có:
\(\begin{array}{l}\,\,\,\,\,\sin 2x - \sqrt 3 \sin x = 0\\ \Leftrightarrow 2\sin x\cos x - \sqrt 3 \sin x = 0\\ \Leftrightarrow \sin x\left( {2\cos x - \sqrt 3 } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = \dfrac{{\sqrt 3 }}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \pm \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247