Cho \(\Delta ABC\) đều cạnh 2. Qua ba phép đồng dạng liên tiếp: Phép tịnh tiến \({T_{\overrightarrow {BC} }}\), phép quay \(Q\left( {B,\,{{60}^o}} \right)\), phép vị tự \({V_{\left...

Câu hỏi :

Cho \(\Delta ABC\) đều cạnh 2. Qua ba phép đồng dạng liên tiếp: Phép tịnh tiến \({T_{\overrightarrow {BC} }}\), phép quay \(Q\left( {B,\,{{60}^o}} \right)\), phép vị tự \({V_{\left( {A,\,3} \right)}}\), \(\Delta ABC\) biến thành \(\Delta {A_1}{B_1}{C_1}\). Diện tích \(\Delta {A_1}{B_1}{C_1}\) là:

A. \(9\sqrt 2 \)    

B. \(5\sqrt 2 \) 

C. \(9\sqrt 3 \)   

D. \(5\sqrt 3 \) 

* Đáp án

C

* Hướng dẫn giải

Tam giác ABC đều cạnh 2 nên có diện tích \({S_{ABC}} = \frac{{{2^2}.\sqrt 3 }}{4} = \sqrt 3 \).

Tam giác \({A_1}{B_1}{C_1}\) đồng dạng tam giác \(ABC\) theo tỉ số \(k = 3\) nên \(\frac{{{S_{{A_1}{B_1}{C_1}}}}}{{{S_{ABC}}}} = {k^2} = 9\)

\( \Rightarrow {S_{{A_1}{B_1}{C_1}}} = 9{S_{ABC}} = 9\sqrt 3 \)

Đáp án C

Copyright © 2021 HOCTAP247