Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x = - \sqrt 2 \).

Câu hỏi :

Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x =  - \sqrt 2 \).

A. \(x =  - \dfrac{\pi }{4} + k2\pi \)

B. \(x = \dfrac{{3\pi }}{8} + k\pi \)

C. \(x =  - \dfrac{\pi }{8} + k\pi \) 

D. \(x = \dfrac{\pi }{4} + k\pi \) 

* Đáp án

C

* Hướng dẫn giải

Ta có: \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x =  - \sqrt 2  \) \(\Leftrightarrow \sqrt 2 \sin \left( {2x - \dfrac{\pi }{4}} \right) =  - \sqrt 2 \)

\( \Leftrightarrow \sin \left( {2x - \dfrac{\pi }{4}} \right) =  - 1\) \( \Leftrightarrow 2x - \dfrac{\pi }{4} =  - \dfrac{\pi }{2} + k2\pi \)

\( \Leftrightarrow 2x =  - \dfrac{\pi }{4} + k2\pi \) \( \Leftrightarrow x =  - \dfrac{\pi }{8} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Copyright © 2021 HOCTAP247