Trong mặt phẳng Oxy, cho đường thẳng \(d:x + y - 2 = 0\), ảnh của d qua phép đối xứng tâm I (1;2) là đường thẳng:

Câu hỏi :

Trong mặt phẳng Oxy, cho đường thẳng \(d:x + y - 2 = 0\), ảnh của d qua phép đối xứng tâm I (1;2) là đường thẳng:      

A. \(d':x + y + 4 = 0\)            

B. \(d':x + y - 4 = 0\)        

C. \(d':x - y + 4 = 0\)     

D. \(d':x - y - 4 = 0\) 

* Đáp án

B

* Hướng dẫn giải

Gọi \(d' = \)ĐI (d)

Giả sử phép đối xứng tâm \(I\left( {1;2} \right)\) biến \(M\left( {x;y} \right) \in d\) thành điểm \(M'\left( {x';y'} \right)\) suy ra \(M' \in d'\)

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{x' = 2.1 - x = 2 - x}\\{y' = 2.2 - y = 4 - y}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2 - x'}\\{y = 4 - y'}\end{array}} \right. \) \(\Rightarrow M\left( {2 - x';4 - y'} \right).\)

\(M\left( {x;y} \right) \in d\) nên ta có \(\left( {2 - x'} \right) + \left( {4 - y'} \right) - 2 = 0 \) \(\Leftrightarrow x' + y' - 4 = 0\)

Mà \(M' \in d'\)

Vậy \(d':x + y - 4 = 0\)

Chọn B.

Copyright © 2021 HOCTAP247