Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).

Câu hỏi :

Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).

A. \(x =  - \dfrac{\pi }{3} + k2\pi ;\,\,\,x = \dfrac{{4\pi }}{3} + k2\pi \)

B. \(x = \dfrac{\pi }{6} + k2\pi ;\,\,\,x = \dfrac{{5\pi }}{6} + k2\pi \)

C. \(x =  - \dfrac{\pi }{6} + k2\pi ;\,\,\,x = \dfrac{{7\pi }}{6} + k2\pi \)

D. \(x = \dfrac{\pi }{3} + k2\pi ;\,\,\,x = \dfrac{{2\pi }}{3} + k2\pi \) 

* Đáp án

C

* Hướng dẫn giải

Ta có: \(2{\sin ^2}x - 3\sin x - 2 = 0 \) \(\Leftrightarrow \left( {\sin x - 2} \right)\left( {2\sin x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 2(VN)\\\sin x =  - \dfrac{1}{2}\end{array} \right. \) \(\Rightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Copyright © 2021 HOCTAP247