A. \(3x - y + 3 = 0\)
B. \(3x + y + 3 = 0\)
C. \(3x + y - 3 = 0\)
D. \(3x - y - 3 = 0\)
D
Gọi \(M\left( {x;y} \right) \in d:3x - y - 3 = 0\)
Gọi \(M'\left( {x';y'} \right)\) là ảnh của \(M\left( {x;y} \right)\) qua phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k = - 1\).
Khi đó ta có : \(\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\) nên \(M\left( { - x' + 4; - y' + 6} \right)\)
Mà \(M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\) nên ta có :
\(\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) - 3 = 0\\ \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0\\ \Leftrightarrow 3x' - y' - 3 = 0\end{array}\)
Do đó, ảnh của đường thẳng \(d:3x - y - 3 = 0\) qua phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k = - 1\) là đường thẳng \(d':3x - y - 3 = 0\)
Ta tìm ảnh của đường thẳng \(d'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {1;3} \right)\)
Gọi \(N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\) và \(N'\left( {{x_2};{y_2}} \right)\) là ảnh của qua \({T_{\overrightarrow v }}\)
Khi đó ta có: \(\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\)
Thay tọa độ \(N\left( {{x_2} - 1;{y_2} - 3} \right)\) vào phương trình đường thẳng \(d':3x - y - 3 = 0\) ta được:
\(\begin{array}{l}3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0\\ \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\end{array}\)
Vậy ảnh của đường thẳng \(d'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {1;3} \right)\) là đường thẳng \({d_1}:3x - y - 3 = 0.\)
Hay đường thẳng cần tìm là: \({d_1}:3x - y - 3 = 0.\)
Chọn D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247