Trong mặt phẳng tọa độ \(Oxy\), phép tịnh tiến theo vectơ \(\overrightarrow v \left( {3; - 2} \right)\) biến đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2y = 0\) thành đường...

Câu hỏi :

Trong mặt phẳng tọa độ \(Oxy\), phép tịnh tiến theo vectơ \(\overrightarrow v \left( {3; - 2} \right)\) biến đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2y = 0\) thành đường tròn \(\left( {C'} \right)\). Tìm tọa độ \(I'\) của đường tròn \(\left( {C'} \right)\).

A. \(I'\left( {3; - 3} \right)\)    

B. \(I'\left( { - 3;1} \right)\) 

C. \(I'\left( {3; - 1} \right)\)  

D. \(I'\left( { - 3;3} \right)\) 

* Đáp án

C

* Hướng dẫn giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {0;1} \right)\)

Ảnh của  \(I\left( {0;1} \right)\) qua tịnh tiến theo vectơ \(\overrightarrow v \left( {3; - 2} \right)\) là \(I'\left( {x';y'} \right)\) là tâm của đường tròn \(\left( {C'} \right)\)

Khi đó: \(\left\{ \begin{array}{l}x' = 0 + 3 = 3\\y' = 1 + \left( { - 2} \right) =  - 1\end{array} \right. \Rightarrow I'\left( {3; - 1} \right)\)

Chọn C

Copyright © 2021 HOCTAP247