A. \(\dfrac{{11}}{{60}}\)
B. \(\dfrac{{1}}{{6}}\)
C. \(\dfrac{{1}}{{60}}\)
D. \(\dfrac{{2}}{{3}}\)
A
Số phần tử của không gian mẫu : \(n\left( \Omega \right) = C_{10}^3 = 120.\)
Gọi \(A\) là biến cố lấy được \(3\) viên bi, trong đó có nhiều nhất \(1\) viên bi trắng.
Ta có các trường hợp :
TH1: Ba viên bi được chọn đều màu đen (không có bi trắng)
Số cách chọn là : \(C_3^3.\)
TH2: Ba viên bi được chọn có \(2\) viên bi màu đen, \(1\) viên bi màu trắng.
Số cách chọn là : \(C_3^2C_7^1\)
Như vậy: Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_3^3 + C_3^2C_7^1 = 22.\)
Vậy xác suất cần tìm là : \(P\left( A \right) = \dfrac{{22}}{{120}} = \dfrac{{11}}{{60}}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247