Giải phương trình \(\cos 2x - \sqrt 3 \sin x = 1\).

Câu hỏi :

Giải phương trình \(\cos 2x - \sqrt 3 \sin x = 1\). 

A. \(x = k\pi ;\,\,x =  - \dfrac{\pi }{6} + k2\pi ;\,\,x = \dfrac{{7\pi }}{6} + k2\pi \) 

B. \(x = k2\pi ;\,\,x =  - \dfrac{{2\pi }}{3} + k2\pi \) 

C. \(x = k\pi ;\,\,x =  - \dfrac{\pi }{3} + k2\pi ;\,\,x = \dfrac{{4\pi }}{3} + k2\pi \) 

D. \(x = k\pi ;\,\,x = \dfrac{\pi }{3} + k2\pi ;\,\,x = \dfrac{{2\pi }}{3} + k2\pi \) 

* Đáp án

C

* Hướng dẫn giải

Ta có: \(\cos 2x - \sqrt 3 \sin x = 1 \) \(\Leftrightarrow 1 - 2{\sin ^2}x - \sqrt 3 \sin x = 1\)

\( \Leftrightarrow 2{\sin ^2}x + \sqrt 3 \sin x = 0\) \( \Leftrightarrow \sin x\left( {2\sin x + \sqrt 3 } \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin x =  - \dfrac{{\sqrt 3 }}{2}\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  - \dfrac{\pi }{3} + k2\pi \\x = \dfrac{{4\pi }}{3} + k2\pi \end{array} \right.\;\quad \left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Copyright © 2021 HOCTAP247