Giải phương trình \(\cos 2x + \sin 2x = \sqrt 2 \cos x\) .

Câu hỏi :

Giải phương trình \(\cos 2x + \sin 2x = \sqrt 2 \cos x\) .

A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\dfrac{{2\pi }}{3}\\x = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\)  

B. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k2\pi \\x =  - \dfrac{\pi }{{12}} + k\dfrac{{2\pi }}{3}\end{array} \right.\) 

C. \(\left[ \begin{array}{l}x = \dfrac{\pi }{4} + k2\pi \\x = \dfrac{{4\pi }}{9} + k\dfrac{{2\pi }}{3}\end{array} \right.\) 

D. \(\left[ \begin{array}{l}x = \dfrac{\pi }{4} + k2\pi \\x = \dfrac{\pi }{{12}} + k\dfrac{{2\pi }}{3}\end{array} \right.\)

* Đáp án

D

* Hướng dẫn giải

Ta có: \(\cos 2x + \sin 2x = \sqrt 2 \cos x\)

\(\begin{array}{l}
\cos 2x + \sin 2x = \sqrt 2 \cos x\\
\Leftrightarrow \sqrt 2 \cos \left( {2x - \frac{\pi }{4}} \right) = \sqrt 2 \cos x\\
\Leftrightarrow \cos \left( {2x - \frac{\pi }{4}} \right) = \cos x\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \frac{\pi }{4} = x + k2\pi \\
2x - \frac{\pi }{4} = - x + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + k2\pi \\
3x = \frac{\pi }{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + k2\pi \\
x = \frac{\pi }{{12}} + \frac{{k2\pi }}{3}
\end{array} \right.
\end{array}\)

Chọn đáp án D.

Copyright © 2021 HOCTAP247