Tìm hệ số không chứa x trong khai triển sau \({\left( {{x^3} - \dfrac{2}{x}} \right)^n}\), biết rằng \(C_n^{n - 1} + C_n^{n - 2} = 78\) với x > 0

Câu hỏi :

Tìm hệ số không chứa x trong khai triển sau \({\left( {{x^3} - \dfrac{2}{x}} \right)^n}\), biết rằng \(C_n^{n - 1} + C_n^{n - 2} = 78\) với x > 0

A. -112640      

B. 112640 

C.  -112643

D. 112643 

* Đáp án

A

* Hướng dẫn giải

Ta có

\(C_n^{n - 1} + C_n^{n - 2} = 78\) \( \Rightarrow \,\,\dfrac{{n!}}{{\left( {n - 1} \right)!}} + \dfrac{{n!}}{{2.\left( {n - 2} \right)!}} = 78 \) \(\Leftrightarrow \,\,n + \dfrac{{n\left( {n - 1} \right)}}{2} = 78\,\,\) \( \Leftrightarrow \left[ \begin{array}{l}n = 12\\n =  - 13\end{array} \right.\)

\(C_{12}^k.{\left( {{x^3}} \right)^{12 - k}}.{\left( { - \dfrac{2}{x}} \right)^k}\)  không chứa x suy ra k = 9. Hệ số của số hạng đó là \(C_{12}^9{\left( { - 2} \right)^9} =  - 112640\) .

Chọn đáp án A.

Copyright © 2021 HOCTAP247