Xét xem dãy số \(({u_n})\)với \({u_n} = \dfrac{{{2^n} - 1}}{3}\)có phải là cấp số nhân không? Nếu phải hãy xác định công bội.

Câu hỏi :

Xét xem dãy số \(({u_n})\)với \({u_n} = \dfrac{{{2^n} - 1}}{3}\)có phải là cấp số nhân không? Nếu phải hãy xác định công bội. 

A. \(q = 3\)    

B. \(q = 2\) 

C. \(q = 4\)    

D. \(q = \emptyset \) 

* Đáp án

D

* Hướng dẫn giải

Ta có

\(\left. \begin{array}{l}{u_1} = \dfrac{{{2^1} - 1}}{3} = \dfrac{1}{3}\\{u_2} = \dfrac{{{2^2} - 1}}{3} = 1\\{u_3} = \dfrac{{{2^3} - 1}}{3} = \dfrac{7}{3}\end{array} \right\} \Rightarrow \left( {1:\dfrac{1}{3}} \right) \ne \dfrac{7}{3}\)

Vậy \(({u_n})\) không phải là cấp số nhân nên không tồn tại q.

Chọn D.

Copyright © 2021 HOCTAP247