Trong mặt phẳng Oxy, cho parabol là \((P):{y^2} = x\). Hỏi parabol nào sau đây là ảnh của parabol (P) qua phép đối xứng trục Oy ?

Câu hỏi :

Trong mặt phẳng Oxy, cho parabol \((P):{y^2} = x\). Hỏi parabol nào sau đây là ảnh của parabol (P) qua phép đối xứng trục Oy ?

A. \({y^2} = x\) 

B. \({y^2} =  - x\) 

C. \({x^2} =  - y\) 

D. \({x^2} = y\) 

* Đáp án

B

* Hướng dẫn giải

Gọi \(\left( {P'} \right) = \)Đ­Oy (P)

Gọi \(M\left( {x;y} \right) \in \left( P \right)\) tùy ý.

ĐOy(M) = \(M'\left( {x';y'} \right) \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' =  - x}\\{y' = y}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x =  - x'}\\{y = y'}\end{array}} \right. \) \(\Rightarrow M\left( { - x';y'} \right)\)

Vì \(M \in \left( P \right)\) nên \({y'^2} =  - x'\)

Mặt khác\(M' \in \left( {P'} \right)\)

Vậy phương trình parabol \(\left( {P'} \right):{y^2} =  - x\)

Chọn B.

Copyright © 2021 HOCTAP247