Xét tính tăng, giảm và bị chặn của dãy số \(({u_n})\)biết :\({u_n} = \dfrac{1}{{\sqrt {1 + n + {n^2}} }}\).

Câu hỏi :

Xét tính tăng, giảm và bị chặn của dãy số \(({u_n})\)biết :\({u_n} = \dfrac{1}{{\sqrt {1 + n + {n^2}} }}\).

A. Dãy số tăng, bị chặn trên 

B. Dãy số tăng, bị chặn dưới 

C. Dãy số giảm , bị chặn 

D. Cả A,B,C đều sai     

* Đáp án

C

* Hướng dẫn giải

Ta có

\(\begin{array}{l}\forall n \in {N^*},n < n + 1 \Rightarrow \sqrt {1 + n + {n^2}} \\ \Rightarrow \dfrac{1}{{\sqrt {1 + n + {n^2}} }} > \dfrac{1}{{\sqrt {1 + (n + 1) + {{(n + 1)}^2}} }} \Rightarrow {u_n} > {u_{n + 1}}\end{array}\)

Mặt khác\(\sqrt {{{\left( {n + \dfrac{1}{4}} \right)}^2} + \dfrac{3}{4}}  \ge \dfrac{{\sqrt 3 }}{2} \) \(\Rightarrow 0 < {u_n} = \dfrac{1}{{\sqrt {1 + n + {n^2}} }} \le \dfrac{2}{{\sqrt 3 }}\)

Chọn C.

Copyright © 2021 HOCTAP247