Tìm tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\)

Câu hỏi :

Tìm tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\)

A. \(\dfrac{{2\pi }}{3}\)    

B. \(\dfrac{\pi }{3}\) 

C. \(\dfrac{{4\pi }}{3}\)  

D. \(\dfrac{{7\pi }}{3}\) 

* Đáp án

A

* Hướng dẫn giải

Ta có: \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1 \) \( \Leftrightarrow \cos \left( {x - \frac{\pi }{3}} \right) = \frac{1}{2}\) \(\Leftrightarrow \cos \left( {x - \dfrac{\pi }{3}} \right) = \cos \dfrac{\pi }{3}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{3} = \dfrac{\pi }{3} + k2\pi \\x - \dfrac{\pi }{3} =  - \dfrac{\pi }{3} + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{2\pi }}{3} + k2\pi \\x = k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Các nghiệm thuộc khoảng \(\left( { - \pi ;\pi } \right)\) là \(\left\{ {0;\dfrac{{2\pi }}{3}} \right\}\)

Do đó tổng hai nghiệm là \(\dfrac{{2\pi }}{3}\).

Chọn đáp án A.

Copyright © 2021 HOCTAP247