Để phương trình \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = m\) có nghiệm ta chọn

Câu hỏi :

Để phương trình \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = m\) có nghiệm ta chọn

A. \(m \le 1\)    

B. \(0 \le m \le 1\) 

C. \( - 1 \le m \le 1\)        

D. \(m \ge 0\) 

* Đáp án

B

* Hướng dẫn giải

Ta có: \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = \dfrac{{1 + \cos \left( {x - \dfrac{\pi }{2}} \right)}}{2} = m \) \(\Leftrightarrow \cos \left( {x - \dfrac{\pi }{2}} \right) = 2m - 1\)

Phương trình có nghiệm khi và chỉ khi: \(2m - 1 \in \left[ { - 1;1} \right] \) \(\Leftrightarrow 2m \in \left[ {0;2} \right] \Leftrightarrow m \in \left[ {0;1} \right]\)

Chọn đáp án B.

Copyright © 2021 HOCTAP247