Tính tổng \({S_n} = 1 + 11 + 111 + ... + 11...11\) (có \(10\) chữ số \(1\))

Câu hỏi :

Tính tổng \({S_n} = 1 + 11 + 111 + ... + 11...11\) (có \(10\) chữ số \(1\))

A. \(\dfrac{{{{10}^{11}} - 100}}{{81}}\)   

B. \(\dfrac{{{{10}^{10}} - 100}}{{81}}\) 

C. \(\dfrac{{{{10}^9} - 100}}{{81}}\)   

D. \(\dfrac{{{{10}^8} - 100}}{{81}}\) 

* Đáp án

A

* Hướng dẫn giải

Ta có

\(\begin{array}{c}{S_n} = 1 + 11 + 111 + ... + \underbrace {11...11}_{10}\\9{S_n} = 9 + 99 + 999 + ... + \underbrace {99...99}_{10}\\\,\,\,\,\,\,\,\, = (10 - 1) + (100 - 1) + (1000 - 1) + ... + ({10^{10}} - 1)\\ = \dfrac{{10(1 - {{10}^{10}})}}{{1 - 10}} - 10 = \dfrac{{{{10}^{11}} - 100}}{9}\\{S_n} = \dfrac{{{{10}^{11}} - 100}}{{81}}\end{array}\)    

Chọn A.

Copyright © 2021 HOCTAP247