Cho hai số \(x\) và \(y\) biết các số \(x - y;x + y;3x - 3y\) theo thứ tự lập thành cấp số cộng và các số \(x - 2;y + 2;2x + 3y\) theo thứ tự đó lập thành cấp số nhân. Tìm \(x;y\):

Câu hỏi :

Cho hai số \(x\) và \(y\) biết các số \(x - y;x + y;3x - 3y\) theo thứ tự lập thành cấp số cộng và các số \(x - 2;y + 2;2x + 3y\) theo thứ tự đó lập thành cấp số nhân. Tìm \(x;y\):

A. \(x = 3;y = 1\)     

B. \(x = 3;y = 1\) hoặc \(x =  - \dfrac{{16}}{{13}};y =  - \dfrac{2}{3}\) 

C. \(x = 3;y = 1\) hoặc \(x = \dfrac{{ - 6}}{{13}};y =  - \dfrac{2}{{13}}\) 

D. \(x = 3;y = 1\) hoặc \(x =  - \dfrac{{16}}{3};y = \dfrac{2}{3}\) 

* Đáp án

C

* Hướng dẫn giải

Ta có

\(\begin{array}{c}\left\{ \begin{array}{l}x + y = \dfrac{{x - y + 3x - 3y}}{2}\\{(y + 2)^2} = \left( {x - 2} \right)(2x + 3y)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 3y\\26{y^2} - 22y - 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 3y\\\left[ \begin{array}{l}y = 1\\y = \dfrac{{ - 2}}{{13}}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = \dfrac{{ - 6}}{{13}}\\y = \dfrac{{ - 2}}{{13}}\end{array} \right.\end{array} \right.\end{array}\)

Chọn C.

Copyright © 2021 HOCTAP247