Cho cấp số cộng là \(({u_n})\) thỏa mãn: \(\left\{ {\begin{array}{*{20}{c}}{{u_7} - {u_3} = 8}\\{{u_{2.}}{u_7} = 75}\end{array}} \right.\) . Tìm \({u_1};d\) ?

Câu hỏi :

Cho cấp số cộng \(({u_n})\) thỏa mãn: \(\left\{ {\begin{array}{*{20}{c}}{{u_7} - {u_3} = 8}\\{{u_{2.}}{u_7} = 75}\end{array}} \right.\) . Tìm \({u_1};d\) ?

A. \(\left\{ {\begin{array}{*{20}{c}}{d = 2}\\{{u_1} = 2,{u_1} =  - 17}\end{array}} \right.\)     

B. \(\left\{ {\begin{array}{*{20}{c}}{d = 2}\\{{u_1} = 3,{u_1} =  - 7}\end{array}} \right.\) 

C. \(\left\{ {\begin{array}{*{20}{c}}{d = 2}\\{{u_1} =  - 3,{u_1} =  - 17}\end{array}} \right.\) 

D. \(\left\{ {\begin{array}{*{20}{c}}{d = 2}\\{{u_1} = 3,{u_1} =  - 17}\end{array}} \right.\) 

* Đáp án

D

* Hướng dẫn giải

Ta có

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{{u_7} - {u_3} = 8}\\{{u_{2.}}{u_7} = 75}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6d - {u_1} - 2d = 8\\\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}d = 2\\\left( {{u_1} + 2} \right)\left( {{u_1} + 12} \right) = 75\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 2\\\left[ \begin{array}{l}{u_1} = 3\\{u_1} =  - 17\end{array} \right.\end{array} \right.\end{array}\)

Chọn D.

Copyright © 2021 HOCTAP247