Cho dãy số \(\left( {{x_n}} \right)\)với \({x_n} = \dfrac{{an + 4}}{{n + 2}}\). Dãy số \(\left( {{x_n}} \right)\) là dãy số tăng khi:

Câu hỏi :

Cho dãy số \(\left( {{x_n}} \right)\)với \({x_n} = \dfrac{{an + 4}}{{n + 2}}\). Dãy số \(\left( {{x_n}} \right)\) là dãy số tăng khi: 

A. a = 2      

B. a > 2 

C. a < 2  

D. a > 1 

* Đáp án

B

* Hướng dẫn giải

Ta có \(\begin{array}{l}{x_n} = \dfrac{{an + 4}}{{n + 2}} = a + \dfrac{{ - 2a + 4}}{{n + 2}}\\ \Rightarrow {x_{n + 1}} - {x_n} = \left( { - 2a + 4} \right)\left( {\dfrac{1}{{n + 3}} - \dfrac{1}{{n + 2}}} \right) = \dfrac{2a - 4}{(n+3)(n+2)}\end{array}\)

Để dãy số tăng thì \(2a - 4 > 0 \Leftrightarrow a > 2\)

Chọn B.

Copyright © 2021 HOCTAP247