Trong khai triển sau \({\left( {8{a^2} - \dfrac{1}{2}b} \right)^6}\) hệ số của số hạng chứa \({a^6}{b^3}\) là:

Câu hỏi :

Trong khai triển \({\left( {8{a^2} - \dfrac{1}{2}b} \right)^6}\) hệ số của số hạng chứa \({a^6}{b^3}\) là:

A. \( - 80{a^9}{b^3}\) 

B. \( - 64{a^9}{b^3}\)

C. \( - 1280{a^9}{b^3}\) 

D. \(60{a^6}{b^4}\) 

* Đáp án

C

* Hướng dẫn giải

Theo nhị thức Newton, ta có \(C_6^k.{\left( {8{a^2}} \right)^{6 - k}}.{\left( { - \dfrac{1}{2}b} \right)^k}\)có chứa \({a^6}{b^3}\) , suy ra k = 3  nên hệ số đó là \(C_6^3{.8^3}.\left( { - {{\dfrac{1}{2}}^3}} \right).{a^6}{b^3} =  - 1280{a^6}{b^3}\).

Chọn đáp án C.

Copyright © 2021 HOCTAP247