Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_n} = \dfrac{{2n + 1}}{{n + 1}},\,\,\forall n \ge 1\). Khẳng định nào sau đây là sai?

Câu hỏi :

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_n} = \dfrac{{2n + 1}}{{n + 1}},\,\,\forall n \ge 1\). Khẳng định nào sau đây là sai?

A. \(\left( {{u_n}} \right)\) là dãy số bị chặn dưới     

B. \({u_5} = \dfrac{{11}}{6}\)  

C. \(\left( {{u_n}} \right)\) là dãy giảm       

D. \(\left( {{u_n}} \right)\) là dãy tăng và bị chặn   

* Đáp án

C

* Hướng dẫn giải

Xét hiệu

\(\begin{array}{l}H = {u_{n + 1}} - {u_n},\,\,\forall n \ge 1\\\,\,\,\,\,\, = \dfrac{{2\left( {n + 1} \right) + 1}}{{n + 1 + 1}} - \dfrac{{2n + 1}}{{n + 1}}\\\,\,\,\,\,\, = \dfrac{{2n + 3}}{{n + 2}} - \dfrac{{2n + 1}}{{n + 1}}\\\,\,\,\,\,\, = \dfrac{{\left( {2n + 3} \right)\left( {n + 1} \right) - \left( {2n + 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\\,\,\,\,\,\, = \dfrac{{2{n^2} + 5n + 3 - 2{n^2} - 5n - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\\,\,\,\,\,\, = \dfrac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0\,\,\forall n \ge 1\end{array}\)

Do đó dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

Vậy đáp án sai là C.

Chọn C.

Copyright © 2021 HOCTAP247