A. \(\dfrac{{\sqrt {15} }}{5}\)
B. \(\sqrt {\dfrac{2}{5}} \)
C. \(\sqrt {\dfrac{2}{3}} \)
D. \(\dfrac{1}{{\sqrt 3 }}\)
A
Ta có: \(\left\{ \begin{array}{l}BC \bot AB\,\,\left( {gt} \right)\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).
\( \Rightarrow SB\) là hình chiếu vuông góc của \(SC\) lên \(\left( {SAB} \right)\).
\( \Rightarrow \angle \left( {SC;\left( {SAB} \right)} \right) = \angle \left( {SC;SB} \right) = \angle BSC\).
Vì \(BC \bot \left( {SAB} \right)\,\,\left( {cmt} \right) \Rightarrow BC \bot SB\) \( \Rightarrow \Delta SBC\) vuông tại \(B\)
Tam giác \(ABC\) vuông cân tại \(B\) \( \Rightarrow AB = BC = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{{2a}}{{\sqrt 2 }} = a\sqrt 2 \).
Xét tam giác vuông \(SAB\) có: \(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \).
\( \Rightarrow SC = \sqrt {S{B^2} + C{B^2}} = a\sqrt 5 \)
Xét tam giác vuông \(SBC\) có: \(\cos \angle BSC = \dfrac{{SB}}{{SC}} = \dfrac{{a\sqrt 3 }}{{a\sqrt 5 }} = \sqrt {\dfrac{3}{5}} = \dfrac {\sqrt{15}}{5}\).
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247