Cho hình chóp \(S.ABC\). Đáy \(ABC\) là tam giác vuông cân tại \(B,\,\,AC = 2a\). Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = a\). Khi đó, cosin của...

Câu hỏi :

Cho hình chóp \(S.ABC\). Đáy \(ABC\) là tam giác vuông cân tại \(B,\,\,AC = 2a\). Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = a\). Khi đó, cosin của góc tạo bởi \(SC\) và mặt phẳng \(\left( {SAB} \right)\) có giá trị là:

A. \(\dfrac{{\sqrt {15} }}{5}\)      

B. \(\sqrt {\dfrac{2}{5}} \) 

C. \(\sqrt {\dfrac{2}{3}} \)  

D. \(\dfrac{1}{{\sqrt 3 }}\)  

* Đáp án

A

* Hướng dẫn giải

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\,\,\left( {gt} \right)\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

\( \Rightarrow SB\) là hình chiếu vuông góc của \(SC\) lên \(\left( {SAB} \right)\).

\( \Rightarrow \angle \left( {SC;\left( {SAB} \right)} \right) = \angle \left( {SC;SB} \right) = \angle BSC\).

Vì \(BC \bot \left( {SAB} \right)\,\,\left( {cmt} \right) \Rightarrow BC \bot SB\) \( \Rightarrow \Delta SBC\) vuông tại \(B\) 

Tam giác \(ABC\) vuông cân tại \(B\) \( \Rightarrow AB = BC = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{{2a}}{{\sqrt 2 }} = a\sqrt 2 \).

Xét tam giác vuông \(SAB\) có: \(SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {{a^2} + 2{a^2}}  = a\sqrt 3 \).

\( \Rightarrow SC = \sqrt {S{B^2} + C{B^2}}  =  a\sqrt 5 \)

Xét tam giác vuông \(SBC\) có: \(\cos \angle BSC = \dfrac{{SB}}{{SC}} = \dfrac{{a\sqrt 3 }}{{a\sqrt 5 }} = \sqrt {\dfrac{3}{5}} = \dfrac {\sqrt{15}}{5}\). 

Chọn A.

Copyright © 2021 HOCTAP247