Biết \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + ax} - 1}}{x} = 3,\,\,\,\,\left( {a \in \mathbb{R}} \right)\), tìm giá trị của \(a\)?

Câu hỏi :

Biết \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + ax}  - 1}}{x} = 3,\,\,\,\,\left( {a \in \mathbb{R}} \right)\), tìm giá trị của \(a\)?

A. \(a = 3\).   

B. \(a = 0\) \(\).  

C. \(a = 6\). 

D. \(a = 4\). 

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + ax}  - 1}}{x} = 3\\ \Leftrightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + ax - 1}}{{x\left( {\sqrt {1 + ax}  + 1} \right)}} = 3\\ \Leftrightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{a}{{\sqrt {1 + ax}  + 1}} = 3\\ \Leftrightarrow \dfrac{a}{2} = 3 \Leftrightarrow a = 6\end{array}\)

Chọn C.

Copyright © 2021 HOCTAP247